Distributed and Federated Search of Georeferenced Cultural Information

Ray R. Larson
School of Information Management and Systems
University of California, Berkeley
Overview

• The Cheshire approach to building distributed services
• GEO searching and georeferenced information in our collections
• NSDI Clearinghouse and Services Architecture
• Future Plans
Context

- NSF/JISC International Digital Library Grant
 - Cross-Domain Resource Discovery: Integrated Discovery and Use of Textual, Numeric and Spatial Data
- UC Berkeley working with the University of Liverpool/Manchester Computing with participation from
 - DeMontfort University (MASTER)
 - Art and Humanities Data Service (http://ahds.ac.uk/)
 - Especially the History Data Service (HDS) at the University of Essex
 - Consortium of University Research Libraries (CURL)
 - UC Berkeley Library (and California Digital Library)
 - Making of America II
 - Online Archive of California
 - British Natural History Museum, London
 - NESSTAR \(\rightarrow \) FASTER
 - UKOLN – Resource Discovery Network
 - British Library (ZETOC at Manchester Computing)
Research Areas

• Goals are
 – Practical application of existing DL technologies to some large-scale cross-domain collections
 – Theoretical examination and evaluation of next-generation designs for systems architecture and distributed cross-domain searching for DLs
Approach

• For the first goal, we are implementing a distributed search system based on international standards (Z39.50 and SGML/XML) using the Cheshire II information retrieval system

• Databases included in original proposal:
 – HE Archives hub
 – Arts and Humanities Data Service (AHDS)
 – MASTER
 – CURL (Consortium of University Research Libraries)
 – Online Archive of California (OAC)
 – Making of America II (MOA2) (Basis of the METS Standard)
The Problem

- Hundreds or Thousands of servers with databases ranging widely in content, topic, format
 - Broadcast search is expensive in terms of bandwidth and in processing too many irrelevant results
 - How to select the “best” ones to search?
 - What to search first
 - Which to search next
 - Topical /domain constraints on the search selections
 - Variable contents of database (metadata only, full text...)

September 21, 2002
An Approach for Cross-Domain Resource Discovery

• MetaSearch
 – New approach to building metasearch based on Z39.50
 – Instead of using broadcast search we are using two Z39.50 Services
 • Identification of database metadata using Z39.50
 • Extraction of distributed indexes using Z39.50

• Evaluation
 – How efficiently can we build distributed indexes?
 – How effectively can we choose databases using the index?
 – How effective is merging search results from multiple sources?
 – Hierarchies of servers (general/meta-topical/individual)?
Z39.50 Overview
Z39.50 Explain

- Explain supports searches for
 - Server-Level metadata
 - Server Name
 - IP Addresses
 - Ports
 - Database-Level metadata
 - Database name
 - Search attributes (indexes and combinations)
 - Support metadata (record syntaxes, etc)
Z39.50 SCAN

- Originally intended to support Browsing
- Query for
 - Database
 - Attributes plus Term (i.e., index and start point)
 - Step Size
 - Number of terms to retrieve
 - Position in Response set
- Results
 - Number of terms returned
 - List of Terms and their frequency in the database (for the given attribute combination)
Z39.50 SCAN Results
Syntax: zscan indexname1 term stepsize number_of_terms pref_pos

% zscan title cat 1 20 1
{SCAN {Status 0}
{Terms 20}
{StepSize 1}
{Position 1}}
{cat 27}
{cat-fight 1}
{catalan 19}
{catalogu 37}
{catalonia 8}
{catalyt 2}
{catania 1}
{cataract 1}
{catch 173}
{catch-all 3}
{catch-up 2} …

zscan topic cat 1 20 1
{SCAN {Status 0}
{Terms 20}
{StepSize 1}
{Position 1}}
{cat 706}
{cat-and-mouse 19}
{cat-burglar 1}
{cat-carrying 1}
{cat-egory 1}
{cat-fight 1}
{cat-gut 1}
{cat-litter 1}
{cat-lovers 2}
{cat-pee 1}
{cat-run 1}
{cat-scanners 1} …
MetaSearch Server Index Creation

- For all servers, or a topical subset...
 - Get Explain information
 - For each index
 - Use SCAN to extract terms and frequency
 - Add term + freq + source index + database metadata to the metasearch “Collection Document” (XML)
 - Planned extensions:
 - Post-Process indexes for special types of data (especially Geographic Names, etc)
 - e.g. create “geographical coverage” indexes
MetaSearch Approach

MetaSearch Server

Map Explain And Scan Queries

Map Results

Search Engine

Internet

Map Query

Map Results

Search Engine

DB 1

DB 2

Search Engine

DB 3

DB 4
Geographic Support in Cheshire

- Support for the GEO and GILS attribute sets
- Support for coordinate parsing and indexing from a variety of lat-long formats.
- Support for GEO search and Time-Based operations
GEO Search Operators

- Overlaps
- Fully Enclosed within
- Encloses
- Outside of
- Near
- In addition, the conventional operators
 - != = <= < > >= can be used with coordinate indexes.
Other Geographic access points

- East, West, North, and South bounding coordinates
- Geographic names
- Geographic Codes (Library of Congress)
- Theme and Theme keywords
- Placename thesaurus terms and keywords
- Etc.
 - Virtually all of the FGDC elements can be indexed and made access points
GEO Time Operators

- Before
- Before or During
- During (within or overlapping time range)
- During or After
- After
Current Systems

- Archives Hub
- Distributed Archives Hub
- WARM
 - Liverpool area and national library collections
- Resource Discovery Network
 - Uses OAI to harvest metadata from JISC sponsored services throughout the UK and make this information available via Cheshire search.
- History Data Service (at University of Essex)
Distributed Metadata Servers

General Servers

Meta-Topical Servers

Database Servers

Replicated servers
• Brief overview of the NSDI
Credits

• The NSDI clearinghouse slides are part of a presentation by Doug Nebert at the DGIE Meeting in Washington, DC (2000)
National Geospatial Data Clearinghouse: What is it?

• Institutional view
 – People and infrastructure to facilitate discovery of who has what geographic information.

• Technical view
 – A set of information services that use hardware, software, and telecommunications networks to provide searchable access to information.
• Distributed data producers and users.
• Key components:
 – Data documentation (metadata)
 – Networking (Internet)
 – Serving, searching, and accessing software
 • Z39.50 Search and Retrieve Protocol
 • WWW - World Wide Web
National Geospatial Data Clearinghouse
- Client Side

Hardware and Software
(commercially available Web browser software on PC or UNIX computer)

Access Method
(http / Z39.50)

Credit: Doug Nebert
Conceptual design
Client consults server registry

- Clearinghouse
- Server Registry
- HTML/Java

- State Agency
- Federal Agency
- Private Company
- Local Agency
- Non-Profit Agency
- Academic

list of links

Credit: Doug Nebert
Distributed query is passed to servers
Results returned as “headlines”
Client requests a metadata entry

Federal Agency
State Agency
Private Company
Non-Profit Agency
Local Agency
Academic

Credit: Doug Nebert
Metadata and/or data are downloaded
Metadata and/or data are downloaded

- State Agency
- Federal Agency
- Private Company
- Local Agency
- Non-Profit Agency
- Academic

Credit: Doug Nebert
Clearinghouse assumes...

- State Agency
- Federal Agency
- Academic
- Private Company
- Non-Profit Agency
- Local Agency
- Non-Profit Agency
- Local Agency
- Private Company
- Clearinghouse assumes...

Credit: Doug Nebert
multiple concurrent accesses
Nothing precludes use of Clearinghouse...
for order or sale of spatial data

Federal Agency
State Agency
Private Company
Federal Agency
Non-Profit Agency
Academic

Credit: Doug Nebert
for regular or special delivery
CD-ROM complements on-line access
Clearinghouse approach

- Use International voluntary-consensus standards
- Develop free reference implementations and software for public and commercial re-use
- Promote a common vocabulary for geospatial data discovery on the Internet
Current Clearinghouse reference implementation allows users to query multiple servers on the Internet using a Web browser. This is accomplished via a Web-HTTP "gateway" on a server on installed at the client.
User starts consulting Clearinghouse by downloading a form from one of the gateways that includes all the query fields and a current list of servers maintained by the FGDC.
User composes a query in the HTML or Java interface and passes it back through the gateway.
The gateway host spawns connections to the various Z39.50 servers using the client side of the protocol.
The servers respond with a set of headlines and pointers to return to the client, all collated into a single set of results presented in HTML. The user selects one entry and can connect to the spatial data by the Online_Linkage element.
Future Developments

- Use of Timemap to display representations of information located in distributed databases
- Interfaces to permit Cheshire Query formulation from inside Timemap
- New Java-based version of Cheshire (Cheshire III).
Further Information

• Full Cheshire II client and server source is available
 ftp://cheshire.berkeley.edu/pub/cheshire/
 – Includes HTML documentation

• Project Web Site
 http://cheshire.berkeley.edu/