Requirements and Architecture for Data Grid Middleware

Kai Nan, Deting Yang

Computer Network Information Center
Chinese Academy of Sciences

PNC 2003 Bangkok
Outline

• Data Grid
• Common Requirements for Data Grid Middleware
• Experiences on SDB
• Design for Architecture of SDG
• Progress Update
Data Grid

- Grid
 - resource sharing
 - collaborative problem-solving

- Data Grid
 - more focus on data
 - (scientific) data become one footstone of modern sciences and research
 - data sharing is crucial to most scientists today
Outline

- Data Grid
- **Common Requirements for Data Grid Middleware**
- Experiences on SDB
- Design for Architecture of SDG
- Progress Update
Requirements towards Data Grid Middleware

• Identification
• Provenance
• Metadata
 – technical / context / content / management
• Access Control
• Universal Access Interface
• Publishing / Discovery / Retrieval
• Data Lifecycle
• …
Simplified 3 Steps

• find the data
 – and get related info. (metadata)
• obtain proper rights towards the data
• access the data
 – maybe multiple distributed and heterogeneous databases involved within one request
 – maybe not just data, but processing and/or analysis

• these steps seem to be easy, but …
Grid Information Service

• Step 1-- To find the data
• Requirements
 – Define metadata schema
 • resource discovery
 – answer to “What, How” – intrinsic properties of data
 – relatively static metadata, generated by man
 • location & monitoring
 – answer to “Where, When” – extrinsic properties of data
 – dynamic information, generated by program
 – Define API
 • Publish / Collect
 • Query
Grid Security System

• Step 2 -- To ensure that data be accessed rightly
• Requirements
 – Single Sign-On
 – Delegation
 – Universal credentials
 – Integration with local policies
 – Policy management
 – Data-oriented access control
 – User-based trust/trusteeship
 – Logging
 – Open architecture & Interoperability with other Grids
Uniform Data Access

• Step 3 -- To get the data easily
• Requirements
 – Uniform access interface to single data resource
 – Coordinated access to multiple data resources
 – App-oriented, unified and convenient program interface
 – Schedule policy
 – Data replication
 – Data quality assurance
Outline

• Data Grid
• Common Requirements for Data Grid Middleware
• Experiences on SDB
• Design for Architecture of SDG
• Progress Update
Our Experiences on SDB

- **SDB** – Scientific Database
 - a project funded by CAS since 1986
 - a collection of scientific databases, which cover multiple disciplines including chemistry, biology, geography, astronomy, ecology, …

- By now, SDB has
 - 45 member institutions across China
 - 296 databases
 - data volume 8.2TB
SDB Characteristics & Challenges

• Characteristics
 – Distributed
 – Heterogeneous

• Challenges
 – Requirements for data sharing
 – More collaborative work across multi-sites and multi-disciplines
 – More collaborations with colleagues across the world under Knowledge Innovation Program of CAS
 – The data are from research, and for research.

Data Grid!
Outline

• Data Grid
• Common Requirements for Data Grid Middleware
• Experiences on SDB
• Design for Architecture of SDG
• Progress Update
Scientific Data Grid (SDG)

• one-sentence statement
 – a grid which focuses on sharing multi-discipline scientific data and advancing cooperative research based on the utilization of scientific data

• more words
 – built upon the Scientific Database (SDB) of CAS
 – started in 2001
 – plan to provide service by 2004-2005
 – for academic and research
 – built by CAS, open to the world
SDG Vision

• Resource Level – sharing and development
 – make scientific data more accessible
 – data integration
 – data \rightarrow information \rightarrow knowledge

• App Level – enabling e-Science applications
 – complex problem-resolving with heavy use of data
 – cross multiple databases / cross-disciplinary
 – demand more resources (cycle, storage, bandwidth, instrument, sensor, …)
SDG Middleware

- applications
 - app-oriented, unified program interface
 - coordinated access to multiple data resources
 - uniform access interface to single data resource
 - local data management system, could be DBMS or file system
 - databases

Diagram:
- Application
 - Grid API
 - Data Res. Broker
 - Uniform Access Int.
 - Local Data System
 - Info. Service
 - Security System
SDG Information Service

- SDG Info. Service
 - DCIS: Data Container Info. Service
 - built on Globus MDS
 - design DIT for SDG (schema, OID, namespace)
 - develop a program which collects information and returns it as LDIF, called info. provider
 - configure a new MDS
 - MDIS: MetaData Info. Service
 - actually a normal LDAP
 - add ldbm-backend to MDS in order to store static metadata
 - develop the metadata tool to manage MDIS
 - Compatible with Globus MDS 2.1
 - Future plans: extend the infrastructure with Grid Services
SDG Information Service (cont’d)
SDG Universal Metadata Tool

• Requirements
 – why universal
 • many disciplines in SDG → similarly many or more metadata standards
 • it’s not good for us to develop a tool for every metadata schema individually
 • input metadata for existing databases is more bothersome, so an ease-to-use tool might be must-have in practice
 – input: a metadata schema (xml DTD)
 – output:
 • Web-based, customizable UI
 • LDAP-based Storage
 • Management functions (add, delete, modify and query)
 – back-end is MDIS
- metadata is tree-like and more flexible than fix-column tables, difficult to deal with on web UI
- use xml files to store interim results
SDG Security System

• Services
 – Authentication (Based on Globus GSI)
 • secure connection
 • user proxy management
 – Authorization
 • mapping global certificates to local roles
 • role-based access control
 • local role management
 – Accounting
SDG Security System (cont’d)

Full Process of security-related operations under SDG Security System

Step1 Create user proxy

Step2 Authen. C_{UP1} VS C_{APP}

Step3 Authen. C_{UP2} VS C_{IS}

Step4 Authen. C_{UP2} VS C_{DRB}

Step5 Authen. C_{UP1} VS C_{IS}

Step6 Authen. C_{UP1} VS C_{UAI}

Step7 Authen. C_{UAI} VS C_{IS}

Step8 Map global cert to local role

Step9 Role-based access control

Step10 Access data

<table>
<thead>
<tr>
<th>C_x, K_x</th>
<th>X’s Cert & Key</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP1, UP2, …</td>
<td>User Proxy, 2nd-level User Proxy, …</td>
</tr>
</tbody>
</table>
SDG Uniform Access Interface

Application Clients

Internet

……

Grid Level Services

Internet

Information Service

……

Member Institutes

Oracle

SQLServer

FileSystem

……

Node Level Services & Data Resources

mySQL

DB2

Foxpro

……

Member Institutes
SDG Uniform Access Interface (cont’d)

- OGSA-based
- Two Levels Services
 - Node level
 - Data services on single node
 - Grid level
 - Data services cross multiple nodes

- Data services
 - Data Query
 - Data Analysis
 - Data Processing
 - Data Replica
 -
Outline

• Data Grid
• Common Requirements for Data Grid Middleware
• Experiences on SDB
• Design for Architecture of SDG
• Progress Update
Progress Update

• SDG Middleware Tools and Services
 – Universal Metadata Tool, V2.0
 – Local Access Control Tool, V1.0
 – Certificate Management System, V1.0
 – Statistics Services of Data Volume (SAT), V1.1
 – Image Process Services, V1.0
SAT Architecture
部署在节点级机构
Thank you!